Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats.
نویسندگان
چکیده
OBJECTIVE Core temperature is reduced spontaneously after asphyxial cardiac arrest in rats. To determine whether spontaneous hypothermia influences neurologic damage after asphyxial arrest, we compared neurologic outcome in rats permitted to develop spontaneous hypothermia vs. rats managed with controlled normothermia. INTERVENTIONS Male Sprague-Dawley rats were asphyxiated for 8 mins and resuscitated. After extubation, a cohort of rats was managed with controlled normothermia (CN) by placement in a servo-controlled incubator set to maintain rectal temperature at 37.4 degrees C for 48 hrs. CN rats were compared with permissive hypothermia (PH) rats that were returned to an ambient temperature environment after extubation. Rats were killed at either 72 hrs (PH72hr, n = 14; CN72hr, n = 9) or 6 wks (PH6wk, n = 6, CN6wk, n = 6) after resuscitation. PH72 rats were historic controls for the CN72 rats, whereas PH6 and CN6 rats were randomized and studied contemporaneously. MEASUREMENTS A clinical neurodeficit score (NDS) was determined daily. A pathologist blinded to group scored 40 hematoxylin and eosin -stained brain regions for damage by using a 5-point scale (0 = none, 5 = severe). Quantitative analysis of CA1 hippocampus injury was performed by counting normal-appearing neurons in a defined subsection of CA1. MAIN RESULTS Mean rectal temperatures measured in the PH6wk rats (n = 6) were 36.9, 34.8, 35.5, 36.7, and 37.4 degrees C at 2, 8, 12, 24, and 36 hrs, respectively. Mortality rate (before termination) was lower in PH compared with CN (0/20 vs. 7/15; p < .005). PH demonstrated a more favorable progression of NDS (p = .04) and less weight loss (p < .005) compared with CN. Median histopathology scores were lower (less damage) in PH72hr vs. CN72hr for temporal cortex (0 vs. 2.5), parietal cortex (0 vs. 2), thalamus (0 vs. 3), CA1 hippocampus (1.5 vs. 4.5), CA2 hippocampus (0 vs. 3.5), subiculum (0 vs. 4), and cerebellar Purkinje cell layer (2 vs. 4) (all p < .05). There was almost complete loss of normal-appearing CA1 neurons in CN72hr rats (6 +/- 2 [mean +/- SD] normal neurons compared with 109 +/- 12 in naïve controls). In contrast, PH72hr rats demonstrated marked protection (97 +/- 23 normal-appearing neurons) that was still evident, although attenuated, at 6 wks (42 +/- 24 normal-appearing neurons, PH6wk). CONCLUSION Rats resuscitated from asphyxial cardiac arrest develop delayed, mild to moderate, prolonged hypothermia that is neuroprotective.
منابع مشابه
Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression.
This study examined whether prolonged hypothermia induced 1 hour after resuscitation from asphyxial cardiac arrest would improve neurologic outcome and alter levels of stress-related proteins in rats. Rats were resuscitated from 8 minutes of asphyxia resulting in cardiac arrest. Brain temperature was regulated after resuscitation in three groups: normothermia (36.8 degrees C x 24 hours), immedi...
متن کاملDelayed hypothermia preferentially increases expression of brain-derived neurotrophic factor exon III in rat hippocampus after asphyxial cardiac arrest.
Brain-derived neurotrophic factor (BDNF) protein levels increase in rats treated with a regimen of delayed, mild hypothermia that improve neurological recovery after asphyxial cardiac arrest. BDNF transcription in rat brain involves at least five different BDNF exons (exons I-V) that produce four different varieties of mRNA, each containing exon V paired with one of exons I-IV. This study exami...
متن کاملEffects of mild hypothermia on expression of NF-E2-related factor 2 and heme-oxygenase-1 in cerebral cortex and hippocampus after cardiopulmonary resuscitation in rats
Objective(s): The aim of this study was to investigate the effects of mild hypothermia on expression of NF-E2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1) of rat cerebral cortex and hippocampus after cardiopulmonary resuscitation and further investigate the possible mechanism of action. Material and Methods:To copy an asphyxia heart arrest model, Sprague Dawley rats were randomly divided...
متن کاملThe differences in brain damage between asphyxial and ventricular fibrillation cardiac arrests
Objective: Asphyxia and ventricular fibrillation are the two most prevalent causes of cardiac arrest. The study investigated the differences in brain damage after cardiac arrest between asphyxial and ventricular fibrillation cardiac arrests in rats. Methods: Male healthy Sprague-Dawley rats were randomly assigned to the asphyxial group (cardiac arrest of 6 min, n=15), ventricular fibrillation g...
متن کاملImproving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring.
OBJECTIVES Therapeutic hypothermia (TH) after cardiac arrest (CA) improves outcomes in a fraction of patients. To enhance the administration of TH, we studied brain electrophysiological monitoring in determining the benefit of early initiation of TH compared to conventional administration in a rat model. METHODS Using an asphyxial CA model, we compared the benefit of immediate hypothermia (IH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Critical care medicine
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2000